最近免费视频中文2019完整版_1069男同gv免费观看_成人性色生活片免费看爆迷你_公不要添了下面流水啦

【2021MBA考研數(shù)學的七大難點問題梳理,選準復習方向!】

【摘要】考研數(shù)學是考研小伙伴們的難關,一聽到數(shù)學,頭都疼,復習數(shù)學時也是頭大。但是聯(lián)考數(shù)學水平基本是大學數(shù)學,但是遺忘太久再拾起來也不是一件容易的事。只要按計劃正常復習,正常練習就可以。下面則是2021MBA考研數(shù)學高數(shù)復習的重中之重是哪些?覆蓋哪些考點?
 
1.函數(shù)、極限與連續(xù)。
 
求分段函數(shù)的復合函數(shù)求極限或已知極限確定原式中的常數(shù)討論函數(shù)的連續(xù)性,判斷間斷點的類型無窮小階的比較討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù),或確定方程在給定區(qū)間上有無實根。這一部分更多的會以選擇題,填空題,或者作為構成大題的一個部件來考核,考研數(shù)學復習的關鍵是要對這些概念有本質的理解,在此基礎上找習題強化。
 
2.一元函數(shù)微分學。
 
求給定函數(shù)的導數(shù)與微分(包括高階導數(shù)),隱函數(shù)和由參數(shù)方程所確定的函數(shù)求導,特別是分段函數(shù)和帶有絕對值的函數(shù)可導性的討論利用洛比達法則求不定式極限討論函數(shù)極值,方程的根,證明函數(shù)不等式利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關命題,此類問題證明經(jīng)常需要構造輔助函數(shù)幾何、物理、經(jīng)濟等方面的最大值、最小值應用問題,解這類問題,主要是確定目標函數(shù)和約束條件,判定所討論區(qū)間利用導數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。
 
3.一元函數(shù)積分學。
 
計算題:計算不定積分、定積分及廣義積分關于變上限積分的題:如求導、求極限等有關積分中值定理和積分性質的證明題定積分應用題:計算面積,旋轉體體積,平面曲線弧長,旋轉面面積,壓力,引力,變力作功等綜合性試題。在考研數(shù)學這一部分中,主要以計算應用題出現(xiàn),只需多加練習即可。
 
4.向量代數(shù)和空間解析幾何。
 
計算題:求向量的數(shù)量積,向量積及混合積求直線方程,平面方程判定平面與直線間平行、垂直的關系,求夾角建立旋轉面的方程與多元函數(shù)微分學在幾何上的應用或與線性代數(shù)相關聯(lián)的題目。這一部分的難度在考研數(shù)學中應該是相對簡單的,找輔導書上的習題練習,需要做到快速正確的求解。
 
5.多元函數(shù)的微分學。
 
判定一個二元函數(shù)在一點是否連續(xù),偏導數(shù)是否存在、是否可微,偏導數(shù)是否連續(xù)求多元函數(shù)(特別是含有抽象函數(shù))的一階、二階偏導數(shù),求隱函數(shù)的一階、二階偏導數(shù)求二元、三元函數(shù)的方向導數(shù)和梯度求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數(shù)的微分學與前面向量代數(shù)與空間解析幾何的綜合題,應結合起來復習多元函數(shù)的極值或條件極值在幾何、物理與經(jīng)濟上的應用題求一個二元連續(xù)函數(shù)在一個有界平面區(qū)域上的最大值和最小值。這部分應用題多要用到其他領域的知識,在復習時要引起注意,可以找一些題目做做,找找這類題目的感覺。
 
6.多元函數(shù)的積分學。
 
二重、三重積分在各種坐標下的計算,累次積分交換次序第一型曲線積分、曲面積分計算第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用第二型(對坐標)曲面積分的計算,高斯公式及其應用梯度、散度、旋度的綜合計算重積分,線面積分應用求面積,體積,重量,重心,引力,變力作功等。
 
7.微分方程。
 
求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,求線性常系數(shù)齊次和非齊次方程的特解或通解根據(jù)實際問題或給定的條件建立微分方程并求解綜合題,常見的是以下內容的綜合:變上限定積分,變積分域的重積分,線積分與路徑無關,全微分的充要條件,偏導數(shù)等。
 
今天2021MBA考研數(shù)學的七大難點問題梳理,選準復習方向!內容就到這里啦,希望對2021MBA復習的考生有所幫助。

X

掃碼添加獲取各院校復試名單及錄取名單

【版權與免責聲明】本站所提供的內容除非來源注明研線網(wǎng),否則內容均為網(wǎng)絡轉載及整理,并不代表本站贊同其觀點和對其真實性負責。文章由本站編輯整理發(fā)出,僅供個人交流學習使用。如本站稿件涉及版權等問題,請聯(lián)系本站管理員予以更改或刪除。

責任編輯:czk