陜西科技大學(xué)碩士研究生入學(xué)考試
《高等數(shù)學(xué)》考試大綱
考核要點
第一章函數(shù)、極限、連續(xù)
基本要求:
1.在中學(xué)已有函數(shù)知識的基礎(chǔ)上,加深對函數(shù)概念的理解和函數(shù)性質(zhì)(奇偶性、單調(diào)性、周期性和有界性)的了解。
2.理解復(fù)合函數(shù)的概念,了解反函數(shù)的概念。
3.會建立簡單實際問題中的函數(shù)關(guān)系式。
4.理解極限的概念,了解極限的定義。
5.熟練掌握極限的有理運算法則,會用變量代換求某些簡單復(fù)合函數(shù)的極限。
6.了解極限的性質(zhì)(唯一性、有界性、保號性)和兩個存在準則(夾逼準則與單調(diào)有界準則),會用兩個重要極限與求極限。
7.了解無窮小、無窮大、高階無窮小和等價無窮小的概念,會用等價無窮小求極限。
8.理解函數(shù)在一點連續(xù)和在一區(qū)間上連續(xù)的概念。
9.了解函數(shù)間斷點的概念,會判別間斷點的類型。
10.了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的介值定理與最大值、最小值定理。
本章重點:極限概念,極限的四則運算法則,利用兩個重要極限求極限,函數(shù)的連續(xù)性。
本章難點:極限的定義,極限存在準則。
第二章導(dǎo)數(shù)與微分
基本要求:
1.理解導(dǎo)數(shù)的概念及其幾何意義(不要求學(xué)生做利用導(dǎo)數(shù)的定義研究抽象函數(shù)可導(dǎo)性的習(xí)題),了解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2.了解導(dǎo)數(shù)作為函數(shù)變化率的實際意義,會用導(dǎo)數(shù)表達科學(xué)技術(shù)中一些量的變化率。
3.熟練掌握導(dǎo)數(shù)的有理運算法則和復(fù)合函數(shù)的求導(dǎo)法,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。
4.理解微分的概念,了解微分概念中所包含的局部線性化思想,了解微分的有理運算法則和一階微分形式不變性。
5.了解高階導(dǎo)數(shù)的概念,熟練掌握初等函數(shù)一階、二階導(dǎo)數(shù)的求法(不要求學(xué)生求函數(shù)的階導(dǎo)數(shù)的一般表達式)。
6.會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階導(dǎo)數(shù)以及這兩類函數(shù)中比較簡單的二階導(dǎo)數(shù),會解一些簡單實際問題中的相關(guān)變化率問題。
本章重點:導(dǎo)數(shù)的定義,初等函數(shù)導(dǎo)數(shù)的求法(一階及二階)。
本章難點:復(fù)合函數(shù)求導(dǎo)法,高階導(dǎo)數(shù)的求法。
第三章中值定理與導(dǎo)數(shù)的應(yīng)用
基本要求:
1.理解羅爾(Rolle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理(對三個定理的分析證明不作要求,并且不要求學(xué)生掌握構(gòu)造輔助函數(shù)證明相關(guān)問題的技巧),會用洛必達(L'Hospital)法則求不定式的極限。
2.了解泰勒(Taylor)定理以及用多項式逼近函數(shù)的思想(對定理的分析證明以及利用泰勒定理證明相關(guān)問題不作要求)。
3.理解函數(shù)的極值概念,熟練掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求極值的方法。會求解較簡單的最大值與最小值的應(yīng)用問題。
4.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會描繪一些簡單函數(shù)的圖形(包括水平和鉛直漸近線)。
5.了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。
6.了解求方程近似解的二分法和切線法的思想。
本章重點:羅爾定理,拉格朗日定理,洛必達法則,用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及極值。
本章難點:泰勒定理。
第四章不定積分
基本要求:
1.理解原函數(shù)概念,理解不定積分的概念及性質(zhì)。
2.熟練掌握不定積分的基本公式、換元法、分部積分法(對待定系數(shù)法分解,不作過高要求)。
本章重點:不定積分的換元積分法、分部積分法。
本章難點:換元積分法.
第五、六章定積分及其應(yīng)用
基本要求:
1.理解定積分的概念和幾何意義(對于利用定積分定義求定積分與求極限不作要求),了解定積分的性質(zhì)和積分中值定理。
2.理解原函數(shù)與不定積分的概念,理解變上限的積分作為其上限的函數(shù)及其求導(dǎo)定理,熟練掌握牛頓(Noewton)-萊布尼茲(Leibniz)公式。
3.掌握定積分的換元法與分部積分法。
4.掌握科學(xué)技術(shù)問題中建立定積分表達式的元素法(微元法),會建立某些簡單幾何量和物理量的積分表達式。
5.了解兩類反常積分及其收斂性的概念。
6.了解定積分的近似計算法(梯形法和拋物線法)的思想。
本章重點:定積分的換元積分法、分部積分法,變上限函數(shù)及其求導(dǎo)定理,牛頓–萊布尼茲公式。
本章難點:換元積分法。
第七章微分方程
基本要求:
1.了解微分方程、解、通解、初始條件和特解等概念。
2.掌握變量可分離的方程及一階線性微分方程的解法。
3.會解齊次方程,并從中領(lǐng)會用變量代換求解微分方程的的思想。
4.會用降階法求下列三種類型的高階方程:,。
5.理解二階線性微分方程解的結(jié)構(gòu)。
6.熟練掌握二階常系數(shù)齊次線性微分方程的解法,了解高階常系數(shù)齊次線性微分方程的解法。
7.會求自由項形如,的二階常系數(shù)非齊次線性微分方程的特解,其中為實系數(shù)次多項式,為實數(shù)。
8.會通過建立微分方程模型,解決一些簡單的實際問題。
本章重點:
可分離變量及一階線性微分方程的解法,二階常系數(shù)齊次線性微分方程解法,自由項為的二階常系數(shù)非齊次線性微分方程特解的求法。
本章難點:
伯努利方程和全微分方程的解法,自由項為的二階常系數(shù)非
齊次線性微分方程特解的求法。
第八章空間解析幾何與向量代數(shù)
基本要求:
1.理解空間直角坐標系,理解向量的概念及其表示。
2.熟練掌握向量的運算(線性運算、數(shù)量積、向量積),了解兩個向量垂直、平行的條件。
3.掌握單位向量、方向余弦、向量的坐標表達式以及用坐標表達式進行向量運算的方法。
4.熟練掌握平面的方程和直線的方程及其求法,會利用平面、直線的相互關(guān)系解決有關(guān)問題。
5.理解二次曲面方程的概念,了解空間曲線方程的概念。
6.了解常用二次曲面的方程及其圖形,了解以坐標軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標軸的柱面方程。了解空間曲線的參數(shù)方程和一般方程。
7.了解曲面的交線在坐標平面上的投影批;了解二次曲面的分類。
本章重點:空間直線、平面方程,常用的二次曲面方程。
本章難點:曲面方程。
第九章多元函數(shù)微分學(xué)
基本要求:
1.理解二元函數(shù)的概念,了解多元函數(shù)的概念。
2.了解二元函數(shù)的極限與連續(xù)性的概念,了解有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。
3.理解二元函數(shù)偏導(dǎo)數(shù)與全微分的概念,了解全微分存在的必要條件與充分條件。
4.了解一元向量值函數(shù)及其導(dǎo)數(shù)的概念與計算方法。
5.了解方向?qū)?shù)與梯度的概念及其計算方法。
6.熟練掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法,會求復(fù)合函數(shù)的二階偏導(dǎo)數(shù)。
7.會求隱函數(shù)(包括由兩個方程構(gòu)成的方程組確定的隱函數(shù))的一階偏導(dǎo)數(shù)(對求二階偏導(dǎo)數(shù)不作要求);了解曲線的切線和法平面以及曲面的切平面與法線,并會求出它們的方程。
8.理解二元函數(shù)極值與條件極值的概念,會求二元函數(shù)的極值,了解求條件極值的拉格朗日乘數(shù)法,會求解一些比較簡單的最大值與最小值的應(yīng)用問題。
本章重點:
二元函數(shù)偏導(dǎo)數(shù)的概念,復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法,二元函數(shù)的極值,拉格朗日乘數(shù)法。
本章難點:
復(fù)合函數(shù)(抽象函數(shù))、隱函數(shù)的二階偏導(dǎo)數(shù)求法,方向?qū)?shù)與梯度的概念,拉格朗日乘數(shù)法。
第十章重積分
基本要求:
1.理解二重積分的概念,了解三重積分的概念,了解重積分的性質(zhì)。
2.熟練掌握二重積分的計算方法(直角坐標、極坐標),會計算簡單的三重積分(直角坐標、柱面坐標,球面坐標)。
3.會用重積分求一些幾何量與物理量(平面圖形的面積、立體的體積、曲面面積、質(zhì)量、重心、轉(zhuǎn)動慣量等)
本章重點:二重積分和三重積分的計算方法,兩類曲線、曲面積分的概念及計算,格林公式,高斯公式。
本章難點:
三重積分在直角坐標系、柱面坐標系、球面坐標系下的計算方法。第二類曲線、曲面積分,高斯公式,斯托克斯公式。
第十一章曲線積分與曲面積分
基本要求:
1.理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系,會計算兩類曲線積分(對于空間曲線積分的計算只作簡單訓(xùn)練)。
2.掌握格林(Green)公式,會使用平面線積分與路徑無關(guān)的條件,了解第二類平面線積分與路徑無關(guān)的物理意義;了解兩類曲面積分的概念及其計算方法。
4.了解高斯(Gauss)公式,斯托克斯(Stokes)公式(斯托克斯公式的證明以及利用該公式計算空間曲線積分不作要求)。
5.了解場、散度、旋度的概念和某些特殊場(無源場、無旋場與調(diào)和場),會計算散度與旋度。
6.了解科學(xué)技術(shù)問題中建立重積分與曲線、曲面積分表達式的元素法(微元法),會建立某些簡單的幾何量和物理量的積分表達式。
第十二章無窮級數(shù)
基本要求:
1.理解無窮級數(shù)收斂、發(fā)散以及和的概念,了解無窮級數(shù)的基本性質(zhì)及收斂的必要條件。
2.了解正項級數(shù)的比較審斂法以及幾何級數(shù)與P-級數(shù)的斂散性,掌握正項級數(shù)的比值審斂法。
3.了解交錯級數(shù)的萊布尼茲定理,會估計交錯級數(shù)的截斷誤差。了解絕對收斂與條件收斂的概念及二者的關(guān)系。
4.了解函數(shù)項級數(shù)的收斂域與和函數(shù)的概念,掌握簡單冪級數(shù)收斂區(qū)間的求法。了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(對求冪級數(shù)的和函數(shù)只要求作簡單訓(xùn)練)。
5.會利用,,,與的麥克勞林(Maclaurin)展開式將一些簡單的函數(shù)展開成冪級數(shù)。
6.了解利用將函數(shù)展開為冪級數(shù)進行近似計算的思想。
7.了解用三角函數(shù)逼近周期函數(shù)的思想,了解函數(shù)展開為傅里葉(Fourier)級數(shù)的狄利克雷(Dirichlet)條件,會將定義在和上的函數(shù)展開為傅里葉級數(shù),會會將定義在上的函數(shù)展開為傅里葉正弦或余弦級數(shù)。
本章重點:
幾何級數(shù)、級數(shù)的斂散性,正項級數(shù)的比較、比值判別法,交錯級數(shù)的萊布尼茲判別法,冪級數(shù)收斂半徑及收斂區(qū)間的求法,函數(shù)展開成冪級數(shù),簡單的冪級數(shù)和函數(shù)的求法。
本章難點:正項級數(shù)的比較判別法,用間接法將函數(shù)展開為冪級數(shù),冪級數(shù)的和函數(shù)的求法,泰勒級數(shù)。
參考書目:《高等數(shù)學(xué)》(第七版),同濟大學(xué)應(yīng)用數(shù)學(xué)系編,高等教育出版社,2014
原文標題:2023年文理學(xué)院碩士研究生考試大綱
原文鏈接:https://wl.sust.edu.cn/info/1041/5514.htm
原文鏈接:https://wl.sust.edu.cn/info/1041/5514.htm
以上就是小編整理“2023考研大綱:陜西科技大學(xué)2023年文理學(xué)院碩士研究生《高等數(shù)學(xué)》考試大綱”的全部內(nèi)容,想了解更多考研復(fù)試大綱信息,請持續(xù)關(guān)注本網(wǎng)站!