一、考查目標(biāo)
理解命題邏輯的基本概念及應(yīng)用方法;掌握謂詞邏輯的基本概念及應(yīng)用方法;熟練掌握集合、關(guān)系、函數(shù)的基本概念及運算、論證方法;理解代數(shù)結(jié)構(gòu)的基本概念及研究方法;掌握圖論的概念及應(yīng)用。
二、考試形式與試卷結(jié)構(gòu)
(一)試卷滿分及考試時間
科目滿分均為100分,考試時間為2小時。
(二)答題方式
答題方式為閉卷、筆試。
(三)試卷內(nèi)容結(jié)構(gòu)
命題邏輯:20%左右
謂詞邏輯:10%左右
集合與關(guān)系:20%左右
函數(shù):10%左右
代數(shù)系統(tǒng):15%左右
格:10%左右
圖論:15%左右。
(四)試卷題型結(jié)構(gòu)
客觀題:選擇題20%左右,填空題20%左右;
證明30%左右;
綜合應(yīng)用30%左右。
三、考查內(nèi)容及要求
1、命題邏輯:熟練進(jìn)行命題邏輯符號化,構(gòu)造真值表,命題等值演算,命題推理;
2、謂詞邏輯:熟練進(jìn)行謂詞邏輯符號化,量詞消去,謂詞公式等值演算;
3、集合與關(guān)系:熟練進(jìn)行集合的并交差補運算,集合之間的關(guān)系判定,冪集運算,二元關(guān)系的自反、對稱、傳遞性質(zhì)判定,熟練求解二元關(guān)系的自反、對稱、傳遞閉包,熟練求解偏序集中的特殊元素;
4、函數(shù):熟練進(jìn)行函數(shù)的判定,函數(shù)的性質(zhì)判定,函數(shù)的復(fù)合運算;
5、代數(shù)系統(tǒng):熟練掌握二元運算的性質(zhì),熟練進(jìn)行群、半群和獨異點的判定,熟練求解代數(shù)系統(tǒng)中的特殊元素并證明;
6、格:熟練進(jìn)行格的判定;
7、圖論:熟練運用圖的結(jié)點、邊、補圖的性質(zhì),熟練進(jìn)行歐拉圖、漢密爾頓圖的判定,熟練求解最小生成樹、最優(yōu)二元樹。
四、考試用具說明
考試需攜帶黑色鋼筆或簽字筆答題。
點擊查看:離散數(shù)學(xué)
原文標(biāo)題:2018年信息學(xué)院碩士研究生招生考試復(fù)試大綱
原文鏈接:http://grs.sjzu.edu.cn/info/1020/1994.htm