一、幾何型概率及概率數(shù)理統(tǒng)計的復習
幾何型概率原則上只有理工科考,是數(shù)學一考察的對象,最近兩年經(jīng)濟類的大綱也加進來了,但還沒有考過,數(shù)學三雖然明確寫在大綱里,還沒有考。幾何概率是一個考點,但不是一個考察的重點。它考的可能性很小,如果考也是考一個小題,或者是選擇題或者是填空題或者在大題里運用一下概率的模式,就是一個事件發(fā)生的概率是等于這個事件的度量或者整個樣本空間度量的比。這個度量的話指的是面積,一維空間指的是長度,二維空間指的是面積,三維空間指的是體積。所以幾何概率指的是長度的比、面積的比和體積的比。重點是面積的比,是二維的情況。
幾何概率其實很簡單,是一個程序化的過程,按這四個步驟你肯定能做出來。第一步把樣本空間和讓你求概率的事件用幾何表示出來。第二步既然是幾何概率那就是圖形,第二步把幾何圖形畫出來。第三步你就把樣本空間和讓你求概率的事件所在的幾何圖形的度量,就是剛才所說的面積或者體積求出來。第三步代公式。以前考過的幾何概率的題度量的計算都是用初等的方法做。
二、數(shù)理統(tǒng)計考試重點及參數(shù)估計比重
參數(shù)估計這部分它占數(shù)理統(tǒng)計的一多半內(nèi)容,參數(shù)估計這塊應該是最重要的。統(tǒng)計里面第一章就是關(guān)于樣本還有統(tǒng)計量分布這部分,這部分就是求統(tǒng)計量的數(shù)字特征,統(tǒng)計量是隨機變量。統(tǒng)計里面有什么題型,一個參數(shù)估計,一個求統(tǒng)計量數(shù)字特征或者求統(tǒng)計量的分布,統(tǒng)計量是隨機變量,任何隨機變量都有分布。自然會有這樣的題型。求統(tǒng)計量的數(shù)字特征,求統(tǒng)計量的分布,然后參數(shù)估計,然后估計的標準。統(tǒng)計這個內(nèi)容對大家來說應該是比較好掌握的,題型比較少,你比較好把這個題做好。
三、概率問題的重點及得分方法
隨機變量分布這是一大塊內(nèi)容,基本每都年考一點,還有一個就是數(shù)理特征和數(shù)理統(tǒng)計基本考一個大題,概率和數(shù)理統(tǒng)計這部分如果從復習角度來看我們首先要理解概念,我認為這里面有三個典型途徑:第一古典概率,一個概率的公式的推算,第二個途徑就是利用我們的分布信息來求概率,我們涉及到一維的也可以是二維的,即可以是離散型的也可以是連續(xù)型的,都有求概率的方法,我們討論概率統(tǒng)計里的問題,比如分布函數(shù)問題,本身就是求概率,你只要知道求概率統(tǒng)計三個途徑,所以我討論分布函數(shù),由分布函數(shù)可以討論概率分布函數(shù),源頭是分布函數(shù),分布函數(shù)基礎(chǔ)是求概率,通過這個角度把握我認為概率統(tǒng)計發(fā)現(xiàn)不是你想象的那么復雜了。這里面重點的是二兩者,第一種古典概率考的是排列組合,這個是初中內(nèi)容,稍微難一點古典概率的題,同學沒有過多關(guān)心,不會從這個角度考的,而是根據(jù)我剛才的分析。所以把握這種思路以后,實際上概率統(tǒng)計知識應該把線性代數(shù),特別比高等數(shù)學更好拿分。另外稍微應該注意一下概率統(tǒng)計里面隨機事件和隨機變量之間的轉(zhuǎn)換關(guān)系。我們可以通過隨機事件引進隨機變量,反過來也可以,所以大家復習時候。討論隨機事件之間關(guān)系問題也可以借用隨機變量之間關(guān)系分析,這是概率統(tǒng)計方面大家應該注意幾個比較典型的知識點。
四、結(jié)合實際例子記憶概率公式
概率的公式并不多,背下來是基本的要求,但是概率的公式和高等數(shù)學的公式相比,僅僅記住它是不夠的,比如給一個函數(shù)求導數(shù),你會做,因為你知道是求導數(shù),概率問題,比如全概率公式,考試的時候從來沒有哪一年是請你用全概率公式求求某概率,所以從分析問題的層面來說概率的要求高一點,但是從計算技巧來說概率的技巧低一些,所以我建議大家結(jié)合實際的例子和模型記它。比如二向概率公式,你可以這么記它,記一個模型,把一枚硬幣重復拋N次,正面沖上的概率是多少呢?這個公式哪一個符號在實際問題里面是什么東西,這樣才是在理解的基礎(chǔ)上記憶,當然就不容易忘記了。
五、做題時要理解題意
我們看這樣一個模型,這是概率里經(jīng)常見到的,從實際產(chǎn)品里面我們每次取一個產(chǎn)品,而且取后不放回去,就是日常生活中抽簽抓鬮的模型?,F(xiàn)在我說四句話,大家看看有什么不同,第一句話“求一下第三次取到十件產(chǎn)品有七件正品三件次品,我們每次取一件,取后不放回”,下面我們來求四個類型,第一問我們求第三次取得次品的概率。第二問我們求第三次才取得次品的概率。第三問已知前兩次沒有取得次品第三次取到次品。第四問不超過三次取到次品。大家看到這四問的話我想是容易糊涂的,這是四個完全不同的概率,但是你看完以后可能有很多考生認為有的就是一個類型,但實際上是不一樣的。
先看第一個“第三次取得次品”,這個概率與前面取得什么和后面取得什么都沒有關(guān)系,所以這個我們叫絕對概率。第一個概率我想很多考生都知道,這個概率應該是等于十分之三,用古代概率公式或者全概率公式求出來都是十分之三。這個概率改成第四次、第五次取到都是十分之三,就是說這個概率與次數(shù)是沒有關(guān)系的。所以在這里我們可以看出,日常生活中抽簽、抓鬮從數(shù)學上來說是公平的。
拿這個模型來說,第一次取到和第十次取到次品的概率都是十分之三。下面我們再看看第二個概率,第三次才取到次品的概率,這個事件描述的是績事件,這是概率里重要的概念,改變表示同時發(fā)生的概率。但是這個與第三次的概率是容易混淆的,如果表示的可以這樣表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。
如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC績事件發(fā)生的概率。第三問表示條件概率,已知前兩次沒有取到次品,第三次取到次品P(C|AB),第三問求的就是一個條件概率。我們看第四問,不超過三次取得次品,這是一個和事件的概率,就是P(A+B+C)。從這個例子大家可以看出,概率論確實對題意的理解非常重要,要把握準確,否則就得不到準確的答案。
希望考生們調(diào)整好心態(tài),認真復習,合理安排時間,取得考試的勝利!
以上就是“備考2015考研數(shù)學:概率論與數(shù)理統(tǒng)計復習指導”全部內(nèi)容,更多相關(guān)信息,請持續(xù)關(guān)注研線網(wǎng)!