最近免费视频中文2019完整版_1069男同gv免费观看_成人性色生活片免费看爆迷你_公不要添了下面流水啦

2019考研高數(shù)沖刺復(fù)習(xí):四則運(yùn)算求極限

  考研高數(shù)對很多考生來說,都是一個巨大的難題。大多數(shù)考生會覺得高數(shù)很混亂。下面小編整理了“2019考研高數(shù)沖刺復(fù)習(xí):四則運(yùn)算求極限”的文章,希望對大家有所幫助!
 
  極限的四則運(yùn)算法則:
 
  極限的四則運(yùn)算法則是在學(xué)習(xí)了極限概念和無窮小量與無窮大量之后的又一重要內(nèi)容,也是學(xué)習(xí)導(dǎo)數(shù)和微分的重要基礎(chǔ)知識。
 
  在進(jìn)行極限的四則運(yùn)算法則之前,需要對極限的概念、無窮小量和無窮大量的概念、無窮小量的運(yùn)算性質(zhì)、無窮小量和無窮大量的關(guān)系等基本內(nèi)容都有初步學(xué)習(xí)和了解,而對于如何利用無窮小量的運(yùn)算法則、無窮小量與無窮大量之間的關(guān)系求取函數(shù)的極限,以及利用觀察法求取數(shù)列的極限和簡單函數(shù)的極限,需要進(jìn)行進(jìn)一步的學(xué)習(xí)與掌握。
 
  極限的四則運(yùn)算公式表
 
  公式
 
  加減法 , ,則
 
  乘法 , ,則
 
  除法 , ,且y≠0,B≠0,則
 
  極限的四則運(yùn)算法則是兩個函數(shù)的極限都存在,并且分母的極限還不等于0的情況下,當(dāng)這兩個條件都滿足的,那么兩個函數(shù)在和、差、積、商的極限和這兩個函數(shù)的極限的和、差、積、商都相等;對于一個常數(shù)與一個函數(shù)的乘積的極限的情況,其結(jié)果等于這個常數(shù)與這個函數(shù)的極限乘積;并且一個函數(shù)的乘方的極限和這個函數(shù)的極限乘方也是相等的。在解決具體問題時,需要根據(jù)實(shí)際情況進(jìn)行運(yùn)算和解答,重視實(shí)際應(yīng)用。
 
  當(dāng)極限的函數(shù)是一個整式,可以直接運(yùn)用極限的四則運(yùn)算法則來進(jìn)行計(jì)算。例如,當(dāng)x趨近于1時,分母的極限不是0,可以直接對法則進(jìn)行運(yùn)用和計(jì)算。
 
  例: = =
 
  三 極限的四則運(yùn)算法則在進(jìn)行函數(shù)極限求解時需要注意的事項(xiàng)
 
  第一,對于分式來說,當(dāng)其分母的極限不等于0時,才能直接運(yùn)用四則運(yùn)算法則進(jìn)行求解。
 
  第二,避免一些常見的錯誤的認(rèn)識,例如對c/0=∞,(c為任意的常數(shù)),∞-∞=0,∞/∞=0等。
 
  第三,對于無窮多個無窮小量來說,其和未必是無窮小量。
 
  四 極限的四則運(yùn)算法則的歸類
 
  1.x→x0這種情況
 
  第一,當(dāng)函數(shù)f(x)是一個整式,可以對極限的四則運(yùn)算法則進(jìn)行直接的運(yùn)用和計(jì)算,或是直接對f(x0)進(jìn)行求解。
 
  第二,當(dāng)函數(shù)f(x)是一個分式,其分母的極限等于0,而要注意分子的極限并不等于0,那么便可以對極限的四則運(yùn)算法則進(jìn)行直接的運(yùn)用并計(jì)算,或者求出f(x0)。
 
  第三,在函數(shù)f(x)是個分式的情況下,當(dāng)分母的極限
 
  為0時,那么分子的極限不等于0,可以先對lim =0
 
  進(jìn)行求解,再根據(jù)無窮小量和無窮大量這之間的關(guān)系來進(jìn)行計(jì)算。
 
  第四,當(dāng)f(x)是個分式,如果其分母的極限還有分子極限都等于0,先讓其分子和分母中的公因式進(jìn)行約分,或者是讓含有根號的分子或分母有理化,再進(jìn)行約分,然后利用極限的四則運(yùn)算法則來進(jìn)行計(jì)算,從而得到正確的結(jié)果。
 
  2.x→∞的情形
 
  在x→∞的情形下,函數(shù)的極限值主要是由分子、分母的最高次冪項(xiàng)的次數(shù)之間的關(guān)系來進(jìn)行決定的,需要對分子分母的最高次冪項(xiàng)進(jìn)行分析。
 
  3.其他的情形
 
  在進(jìn)行求解的過程中有時用到有關(guān)無窮小量的運(yùn)算性質(zhì),對于代數(shù)和與乘積的極限而言,要注意其所強(qiáng)調(diào)的“有限個無窮小量”,但如果這個條件沒有辦法得到滿足,就不能用這個性質(zhì)來進(jìn)行極限的求解。
 
  第五,運(yùn)用極限四則運(yùn)算法則求極限時常見的錯誤
 
  在進(jìn)行數(shù)列極限的計(jì)算中,對于四則運(yùn)算法則的運(yùn)用,需要注意一些問題:對數(shù)列極限的加、減和乘的運(yùn)算法則能夠把有限個數(shù)列進(jìn)行推廣,在這種情況下,不能對有限個數(shù)列的情況進(jìn)行適用。在這個法則里還指出,“若兩個數(shù)列都有極限的存在”,這是對數(shù)列極限的四則運(yùn)算法則運(yùn)用的一個前提條件。在利用極限四則運(yùn)算法則進(jìn)行計(jì)算時,注重兩點(diǎn),一是法則對于每個參與運(yùn)算的函數(shù)的極限都必須是存在的;二是商的極限的運(yùn)算法則有個很重要的前提,分母的極限不能為0。當(dāng)這兩個條件中任何一個條件不能滿足的時候,不能利用極限的四則運(yùn)算法則進(jìn)行計(jì)算。
 
  總之,極限的四則運(yùn)算法則作為極限內(nèi)容中的重點(diǎn)與難點(diǎn),需要引起重視,在實(shí)際運(yùn)用時,尤其要注意法則的使用條件,從而避免錯誤的出現(xiàn)。
 
  高數(shù)重點(diǎn)知識點(diǎn)比較多,要逐一擊破!數(shù)學(xué)的復(fù)習(xí)需要穩(wěn)扎穩(wěn)打,掌握每一個重難點(diǎn)。以上為小編整理的"2019考研高數(shù)沖刺復(fù)習(xí):四則運(yùn)算求極限"相關(guān)內(nèi)容,預(yù)祝大家數(shù)學(xué)考試順利通過!

X

掃碼添加獲取各院校復(fù)試名單及錄取名單

【版權(quán)與免責(zé)聲明】本站所提供的內(nèi)容除非來源注明研線網(wǎng),否則內(nèi)容均為網(wǎng)絡(luò)轉(zhuǎn)載及整理,并不代表本站贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé)。文章由本站編輯整理發(fā)出,僅供個人交流學(xué)習(xí)使用。如本站稿件涉及版權(quán)等問題,請聯(lián)系本站管理員予以更改或刪除。

責(zé)任編輯:tjl