還有不到50天就要走上2016考研初試的考場(chǎng)了,小編為考生總結(jié)了以下考研數(shù)學(xué)必須掌握的考點(diǎn),希望考生對(duì)比自己在這些考點(diǎn)上的掌握程度,查漏補(bǔ)缺。
另外提醒考生,在最后沖刺階段,一定要學(xué)會(huì)思考著去做題。大家都有過(guò)的經(jīng)歷就是題明明都做過(guò),但是再遇到還是不會(huì)做!這就是很多同學(xué)存在的通病——不求甚解??傄詾椴粫?huì)做了,看看答案就會(huì)了,并不會(huì)認(rèn)真的思考為什么不會(huì),解題技巧是什么,和它同類型的題我能不能會(huì)做等等。其實(shí),這些都是很重要的,要學(xué)著思考,學(xué)著"記憶",最重要是要會(huì)舉一反三,這樣,我們才能脫離題海的浮沉,能夠做到有效做題,高效提升!
高等數(shù)學(xué)部分
第一章 函數(shù)、極限與連續(xù)
1、函數(shù)的有界性
2、極限的定義(數(shù)列、函數(shù))
3、極限的性質(zhì)(有界性、保號(hào)性)
4、極限的計(jì)算(重點(diǎn))(四則運(yùn)算、等價(jià)無(wú)窮小替換、洛必達(dá)法則、泰勒公式、重要極限、單側(cè)極限、夾逼定理及定積分定義、單調(diào)有界必有極限定理)
5、函數(shù)的連續(xù)性
6、間斷點(diǎn)的類型
7、漸近線的計(jì)算
第二章導(dǎo)數(shù)與微分
1、導(dǎo)數(shù)與微分的定義(函數(shù)可導(dǎo)性、用定義求導(dǎo)數(shù))
2、導(dǎo)數(shù)的計(jì)算(“三個(gè)法則一個(gè)表”:四則運(yùn)算、復(fù)合函數(shù)、反函數(shù),基本初等函數(shù)導(dǎo)數(shù)表;“三種類型”:冪指型、隱函數(shù)、參數(shù)方程;高階導(dǎo)數(shù))
3、導(dǎo)數(shù)的應(yīng)用(切線與法線、單調(diào)性(重點(diǎn))與極值點(diǎn)、利用單調(diào)性證明函數(shù)不等式、凹凸性與拐點(diǎn)、方程的根與函數(shù)的零點(diǎn)、曲率(數(shù)一、二))
第三章中值定理
1、閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值定理、介值定理、零點(diǎn)存在定理)
2、三大微分中值定理(重點(diǎn))(羅爾、拉格朗日、柯西)
3、積分中值定理
4、泰勒中值定理
5、費(fèi)馬引理
第四章 一元函數(shù)積分學(xué)
1、原函數(shù)與不定積分的定義
2、不定積分的計(jì)算(變量代換、分部積分)
3、定積分的定義(幾何意義、微元法思想(數(shù)一、二))
4、定積分性質(zhì)(奇偶函數(shù)與周期函數(shù)的積分性質(zhì)、比較定理)
5、定積分的計(jì)算
6、定積分的應(yīng)用(幾何應(yīng)用:面積、體積、曲線弧長(zhǎng)和旋轉(zhuǎn)面的面積(數(shù)一、二),物理應(yīng)用:變力做功、形心質(zhì)心、液體靜壓力)
7、變限積分(求導(dǎo))
8、廣義積分(收斂性的判斷、計(jì)算)
第五章 空間解析幾何(數(shù)一)
1、向量的運(yùn)算(加減、數(shù)乘、數(shù)量積、向量積)
2、直線與平面的方程及其關(guān)系
3、各種曲面方程(旋轉(zhuǎn)曲面、柱面、投影曲面、二次曲面)的求法
第六章 多元函數(shù)微分學(xué)
1、二重極限和二元函數(shù)連續(xù)、偏導(dǎo)數(shù)、可微及全微分的定義
2、二元函數(shù)偏導(dǎo)數(shù)存在、可微、偏導(dǎo)函數(shù)連續(xù)之間的關(guān)系
3、多元函數(shù)偏導(dǎo)數(shù)的計(jì)算(重點(diǎn))
4、方向?qū)?shù)與梯度
5、多元函數(shù)的極值(無(wú)條件極值和條件極值)
6、空間曲線的切線與法平面、曲面的切平面與法線
第七章 多元函數(shù)積分學(xué)(除二重積分外,數(shù)一)
1、二重積分的計(jì)算(對(duì)稱性(奇偶、輪換)、極坐標(biāo)、積分次序的選擇)
2、三重積分的計(jì)算(“先一后二”、“先二后一”、球坐標(biāo))
3、第一、二類曲線積分、第一、二類曲面積分的計(jì)算及對(duì)稱性(主要關(guān)注不帶方向的積分)
4、格林公式(重點(diǎn))(直接用(不滿足條件時(shí)的處理:“補(bǔ)線”、“挖洞”),積分與路徑無(wú)關(guān),二元函數(shù)的全微分)
5、高斯公式(重點(diǎn))(不滿足條件時(shí)的處理(類似格林公式))
6、斯托克斯公式(要求低;何時(shí)用:計(jì)算第二類曲線積分,曲線不易參數(shù)化,常表示為兩曲面的交線)
7、場(chǎng)論初步(散度、旋度)
第八章 微分方程
1、各類微分方程(可分離變量方程、齊次方程、一階線性微分方程、伯努利方程(數(shù)一、二)、全微分方程(數(shù)一)、可降階的高階微分方程(數(shù)一、二)、高階線性微分方程、歐拉方程(數(shù)一)、差分方程(數(shù)三))的求解
2、線性微分方程解的性質(zhì)(疊加原理、解的結(jié)構(gòu))
3、應(yīng)用(由幾何及物理背景列方程)
第九章 級(jí)數(shù)(數(shù)一、數(shù)三)
1、收斂級(jí)數(shù)的性質(zhì)(必要條件、線性運(yùn)算、“加括號(hào)”、“有限項(xiàng)”)
2、正項(xiàng)級(jí)數(shù)的判別法(比較、比值、根值,p級(jí)數(shù)與推廣的p級(jí)數(shù))
3、交錯(cuò)級(jí)數(shù)的萊布尼茲判別法
4、絕對(duì)收斂與條件收斂
5、冪級(jí)數(shù)的收斂半徑與收斂域
6、冪級(jí)數(shù)的求和與展開(kāi)
7、傅里葉級(jí)數(shù)(函數(shù)展開(kāi)成傅里葉級(jí)數(shù),狄利克雷定理)
線性代數(shù)部分
第一章 行列式
1、行列式的定義
2、行列式的性質(zhì)
3、特殊行列式的值
4、行列式展開(kāi)定理
5、抽象行列式的計(jì)算
第二章 矩陣
1、矩陣的定義及線性運(yùn)算
2、乘法
3、矩陣方冪
4、轉(zhuǎn)置
5、逆矩陣的概念和性質(zhì)
6、伴隨矩陣
7、分塊矩陣及其運(yùn)算
8、矩陣的初等變換與初等矩陣
9、矩陣的等價(jià)
10、矩陣的秩
第三章 向量
1、向量的概念及其運(yùn)算
2、向量的線性組合與線性表出
3、等價(jià)向量組
4、向量組的線性相關(guān)與線性無(wú)關(guān)
5、極大線性無(wú)關(guān)組與向量組的秩
6、內(nèi)積與施密特正交化
7、n維向量空間(數(shù)學(xué)一)
第四章 線性方程組
1、線性方程組的克萊姆法則
2、齊次線性方程組有非零解的判定條件
3、非齊次線性方程組有解的判定條件
4、線性方程組解的結(jié)構(gòu)
第五章 矩陣的特征值和特征向量
1、矩陣的特征值和特征向量的概念和性質(zhì)
2、相似矩陣的概念及性質(zhì)
3、矩陣的相似對(duì)角化
4、實(shí)對(duì)稱矩陣的特征值、特征向量及其相似對(duì)角矩陣
第六章 二次型
1、二次型及其矩陣表示
2、合同變換與合同矩陣
3、二次型的秩
4、二次型的標(biāo)準(zhǔn)型和規(guī)范型
5、慣性定理
6、用正交變換和配方法化二次型為標(biāo)準(zhǔn)型
7、正定二次型及其判定
概率論與數(shù)理統(tǒng)計(jì)部分
第一章 隨機(jī)事件和概率
1、隨機(jī)事件的關(guān)系與運(yùn)算
2、隨機(jī)事件的運(yùn)算律
3、特殊隨機(jī)事件(必然事件、不可能事件、互不相容事件和對(duì)立事件)
4、概率的基本性質(zhì)
5、隨機(jī)事件的條件概率與獨(dú)立性
6、五大概率計(jì)算公式(加法、減法、乘法、全概率公式和貝葉斯公式)
7、全概率公式的思想
8、概型的計(jì)算(古典概型和幾何概型)
第二章 隨機(jī)變量及其分布
1、分布函數(shù)的定義
2、分布函數(shù)的充要條件
3、分布函數(shù)的性質(zhì)
4、離散型隨機(jī)變量的分布律及分布函數(shù)
5、概率密度的充要條件
6、連續(xù)型隨機(jī)變量的性質(zhì)
7、常見(jiàn)分布(0-1分布、二項(xiàng)分布、幾何分布、超幾何分布、泊松分布、均勻分布、指數(shù)分布、正態(tài)分布)
8、隨機(jī)變量函數(shù)的分布(離散型、連續(xù)型)
第三章 多維隨機(jī)變量及其分布
1、二維離散型隨機(jī)變量的三大分布(聯(lián)合、邊緣、條件)
2、二維連續(xù)型隨機(jī)變量的三大分布(聯(lián)合、邊緣和條件)
3、隨機(jī)變量的獨(dú)立性(判斷和性質(zhì))
4、二維常見(jiàn)分布的性質(zhì)(二維均勻分布、二維正態(tài)分布)
5、隨機(jī)變量函數(shù)的分布(離散型、連續(xù)型)
第四章 隨機(jī)變量的數(shù)字特征
1、期望公式(一個(gè)隨機(jī)變量的期望及隨機(jī)變量函數(shù)的期望)
2、方差、協(xié)方差、相關(guān)系數(shù)的計(jì)算公式
3、運(yùn)算性質(zhì)(期望、方差、協(xié)方差、相關(guān)系數(shù))
4、常見(jiàn)分布的期望和方差公式
第五章 大數(shù)定律和中心極限定理
1、切比雪夫不等式
2、大數(shù)定律(切比雪夫大數(shù)定律、辛欽大數(shù)定律、伯努利大數(shù)定律)
3、中心極限定理(列維—林德伯格定理、棣莫弗—拉普拉斯定理)
第六章 數(shù)理統(tǒng)計(jì)的基本概念
1、常見(jiàn)統(tǒng)計(jì)量(定義、數(shù)字特征公式)
2、統(tǒng)計(jì)分布
3、一維正態(tài)總體下的統(tǒng)計(jì)量具有的性質(zhì)
4、估計(jì)量的評(píng)選標(biāo)準(zhǔn)(數(shù)學(xué)一)
5、上側(cè)分位數(shù)(數(shù)學(xué)一)
第七章 參數(shù)估計(jì)
1、矩估計(jì)法
2、最大似然估計(jì)法
3、區(qū)間估計(jì)(數(shù)學(xué)一)
第八章 假設(shè)檢驗(yàn)(數(shù)學(xué)一)
1、顯著性檢驗(yàn)
2、假設(shè)檢驗(yàn)的兩類錯(cuò)誤
3、單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn)