證明題是令很多需要考數(shù)學的考研學生頭疼的題型之一,考研數(shù)學復習進入沖刺階段,如果還是對證明題不夠擅長,就需要對一些常考的考點進行重點突擊。下面是歷年證明題的難點及解題技巧,以供大家參考。
?題目篇
考試難題一般出現(xiàn)在高等數(shù)學,對高等數(shù)學一定要抓住重難點進行復習。高等數(shù)學題目中比較困難的是證明題,在整個高等數(shù)學,容易出證明題的地方如下:
1、數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準則。
2、微分中值定理的相關證明
3、方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
4、不等式的證明
5、定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數(shù)變異法;積分學的方法:換元法和分布積分法。
6、積分與路徑無關的五個等價條件
這一部分是數(shù)一的考試重點,最近幾年沒設計到,所以要重點關注。
?方法篇
以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法。那么,遇到這類的證明題,我們應該用什么方法解題呢?
1、結合幾何意義記住基本原理
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。
只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。
這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,"單調(diào)性"與"有界性"都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
2、借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。
如2007年數(shù)學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數(shù)草圖,再聯(lián)系結論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。
3、逆推法
從結論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發(fā)構造函數(shù),利用函數(shù)的單調(diào)性推出結論。
在判定函數(shù)的單調(diào)性時需借助導數(shù)符號與單調(diào)性之間的關系,正常情況只需一階導的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調(diào)性,再用一階導的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
以上就是今天的全部內(nèi)容,想要獲取更多資訊,請持續(xù)關注本網(wǎng)站!
以上就是今天的全部內(nèi)容,想要獲取更多資訊,請持續(xù)關注本網(wǎng)站!