2020考研的號角已經(jīng)拉響,你是否有了適合自己的復(fù)習(xí)備考計劃呢?作為考研課程中的公共課程,數(shù)學(xué)在其中起著至關(guān)重要的作用。那么2020考研數(shù)學(xué)該如何進行復(fù)習(xí)的?下面小編分享了20考研數(shù)學(xué)的六大必考題型,一起來看看吧。
一、數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準則。
二、微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質(zhì)定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結(jié)合起來進行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。
六、積分與路徑無關(guān)的五個等價條件
以上就是“2020考研數(shù)學(xué)的六大必考題型”的全部內(nèi)容,更多相關(guān)信息,請持續(xù)關(guān)注研線網(wǎng)!