最近免费视频中文2019完整版_1069男同gv免费观看_成人性色生活片免费看爆迷你_公不要添了下面流水啦

2020考研數(shù)學證明題六大常考類型

  2020考研的號角已經(jīng)拉響,你是否有了適合自己的復習備考計劃呢?作為考研課程中的公共課程,數(shù)學在其中起著至關重要的作用。那么2020考研數(shù)學該如何進行復習的?下面小編整理了2020考研數(shù)學最容易出證明題的六大知識點及??碱愋?,供大家參考。
 
  一、數(shù)列極限的證明
 
  數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調有界準則。
 
  二、微分中值定理的相關證明
 
  微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理。
 
  1.零點定理和介質定理;
 
  2.微分中值定理;
 
  包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數(shù)的相關問題,考查頻率底,所以以前兩個定理為主。
 
  3.微分中值定理;
 
  積分中值定理的作用是為了去掉積分符號。
 
  三、方程根的問題
 
  包括方程根唯一和方程根的個數(shù)的討論。
 
  四、不等式的證明
 
  不等式的證明題作為微分的應用經(jīng)常出現(xiàn)在考研題中。利用函數(shù)的單調性證明不等式是不等式證明的基本方法,有時需要兩次甚至三次連續(xù)使用該方法。其他方法可作為該方法的補充,輔助函數(shù)的構造仍是解決問題的關鍵。
 
  五、定積分等式和不等式的證明
 
  主要涉及的方法有微分學的方法:常數(shù)變異法;積分學的方法:換元法和分布積分法。
 
  六、積分與路徑無關的五個等價條件
 
  這一部分是數(shù)一的考試重點,最近幾年沒涉及到,所以要重點關注。
 
以上就是“2020考研數(shù)學證明題六大??碱愋?rdquo;的全部內(nèi)容,更多相關信息,請持續(xù)關注研線網(wǎng)!

X

掃碼添加獲取各院校復試名單及錄取名單

【版權與免責聲明】本站所提供的內(nèi)容除非來源注明研線網(wǎng),否則內(nèi)容均為網(wǎng)絡轉載及整理,并不代表本站贊同其觀點和對其真實性負責。文章由本站編輯整理發(fā)出,僅供個人交流學習使用。如本站稿件涉及版權等問題,請聯(lián)系本站管理員予以更改或刪除。

責任編輯:superadmin