最近免费视频中文2019完整版_1069男同gv免费观看_成人性色生活片免费看爆迷你_公不要添了下面流水啦

2020考研數(shù)學:證明題出題點及解題技巧分析

不知不覺八月份了,暑期的復習對于整個考研復習階段來說非常關鍵,作為考研課程中的公共課程,數(shù)學在其中起著至關重要的作用??佳袛?shù)學的答題步驟很重要,其中解答證明題的時候更加要思維邏輯清晰,為了幫助各位同學,下面小編整理了考研數(shù)學歷年證明題的難點及解題技巧,供大家參考。
 
?題目篇
 
考試難題一般出現(xiàn)在高等數(shù)學,對高等數(shù)學一定要抓住重難點進行復習。高等數(shù)學題目中比較困難的是證明題,在整個高等數(shù)學,容易出證明題的地方如下:
 
1、數(shù)列極限的證明
 
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調有界準則。
 
2、微分中值定理的相關證明
 
3、方程根的問題
 
包括方程根唯一和方程根的個數(shù)的討論。
 
4、不等式的證明
 
5、定積分等式和不等式的證明
 
主要涉及的方法有微分學的方法:常數(shù)變異法;積分學的方法:換元法和分布積分法。
 
6、積分與路徑無關的五個等價條件
 
這一部分是數(shù)一的考試重點,最近幾年沒設計到,所以要重點關注。
 
?方法篇
 
以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法。那么,遇到這類的證明題,我們應該用什么方法解題呢?
 
1、結合幾何意義記住基本原理
 
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。
 
只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。
 
這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,"單調性"與"有界性"都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
 
2、借助幾何意義尋求證明思路
 
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。
 
如2007年數(shù)學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數(shù)草圖,再聯(lián)系結論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。
 
3、逆推法
 
從結論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發(fā)構造函數(shù),利用函數(shù)的單調性推出結論。
 
在判定函數(shù)的單調性時需借助導數(shù)符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數(shù)的單調性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調性,再用一階導的符號判定原來函數(shù)的單調性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

以上就是今天的全部內容,想要獲取更多資訊,請持續(xù)關注本網站!

X

掃碼添加獲取各院校復試名單及錄取名單

【版權與免責聲明】本站所提供的內容除非來源注明研線網,否則內容均為網絡轉載及整理,并不代表本站贊同其觀點和對其真實性負責。文章由本站編輯整理發(fā)出,僅供個人交流學習使用。如本站稿件涉及版權等問題,請聯(lián)系本站管理員予以更改或刪除。

責任編輯:superadmin