時間飛逝,進(jìn)入9月份了,考研報名時間也即將來臨,考研復(fù)習(xí)已經(jīng)進(jìn)入了關(guān)鍵的階段,那么,在接下來的復(fù)習(xí)中如何根據(jù)自己的實際情況開展合理高效的復(fù)習(xí)計劃?下面就為大家介紹幾個知識點(diǎn),幫助大家更好的備考,一起來看看吧!
一、幾個易混概念:
連續(xù),可導(dǎo),存在原函數(shù),可積,可微,偏導(dǎo)數(shù)存在他們之間的關(guān)系式怎么樣的?存在極限,導(dǎo)函數(shù)連續(xù),左連續(xù),右連續(xù),左極限,右極限,左導(dǎo)數(shù),右導(dǎo)數(shù),導(dǎo)函數(shù)的左極限,導(dǎo)函數(shù)的右極限。
二、羅爾定理:
設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù)(其中a不等于b),在開區(qū)間(a,b)上可導(dǎo),且f(a)=f(b),那么至少存在一點(diǎn)ξ∈(a、b),使得f‘(ξ)=0。羅爾定理是以法國數(shù)學(xué)家羅爾的名字命名的。羅爾定理的三個已知條件的意義,①f(x)在[a,b]上連續(xù)表明曲線連同端點(diǎn)在內(nèi)是無縫隙的曲線;②f(x)在內(nèi)(a,b)可導(dǎo)表明曲線y=f(x)在每一點(diǎn)處有切線存在;③f(a)=f(b)表明曲線的割線(直線AB)平行于x軸;羅爾定理的結(jié)論的直幾何意義是:在(a,b)內(nèi)至少能找到一點(diǎn)ξ,使f’(ξ)=0,表明曲線上至少有一點(diǎn)的切線斜率為0,從而切線平行于割線AB,與x軸平行。
三、.泰勒公式展開的應(yīng)用專題:
相信很多同學(xué)看到泰勒公式就哆嗦,因為咋一看很長很恐怖,瞬間大腦空白,身體失重的感覺。其實在我搞明白一下幾點(diǎn)后,原來的癥狀就沒有了。1.什么情況下要進(jìn)行泰勒展開;2.以哪一點(diǎn)為中心進(jìn)行展開;3.把誰展開;4.展開到幾階?
四、應(yīng)用多次中值定理的專題:
大部分的考研題,一般要考察你應(yīng)用多次中值定理,最重要的就是要培養(yǎng)自己對這種題目的敏感度,要很快反映老師出這題考哪幾個中值定理,我的敏感性是靠自己多練習(xí)綜合題培養(yǎng)出來的。我會經(jīng)常會去復(fù)習(xí),那樣我對中值定理的題目早已沒有那種剛學(xué)高數(shù)時的害怕之極。要想對微分中值定理這塊的題目有條理的掌握,看我這個總結(jié)定會事半功倍的。
五、對稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應(yīng)用:
這幾乎每年必考,要么小題中考,要么大題中要用,這是必須掌握的知識,但是往往不是那么容易就靠做3,4個題目就能了解這知識點(diǎn)的應(yīng)用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結(jié)果,但是要是能用以上性質(zhì),那可真是三下五除二搞定,這方面的感覺相信大家有過,可是或許僅僅是曇花一現(xiàn),因為你做出來了以為以后就一定會在相似的題目中用,其實不然,因為僅僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時候或許就是考場上了,你可能頓時苦思冥想,最終還是選擇了最傻的辦法,浪費(fèi)了寶貴時間。說這些其實就是說明,考場上的正?;虺0l(fā)揮是建立在平時踏實做,見識廣,嚴(yán)要求的基礎(chǔ)上。
考研是一場艱苦的戰(zhàn)斗,需要大家付出很多的汗水和淚水,希望大家能夠堅持到最后,祝大家能夠取得好成績!